

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

CHANGELOG

v0.1.0 (2021-01-07)

Bug Fixes

	fix a stopping issue with fancy output in some corner cases

	add a dependency on six

v0.0.4 (2020-11-16)

	No interesting change

v0.0.3 (2020-05-21)

New Features

	add fancy_output option (with rich library)

v0.0.2 (2020-05-06)

New Features

	add drone support

	add extra_context_func option

	add an option to hide key/values in stdout/stderr

	upgrade structlog

	add an option to avoid to redirect standard python logging

	allow some non standards logging levels

	feat: replace MODULE* environment variables names by MFMODULE* (MODULE_HOME becomes MFMODULE_HOME and so on)

	better error handling if we can’t log

	add a way to silent a noisy logger by its name

	add syslog support

	remove metwork specific modes

	use github actions

Bug Fixes

	don’t use mflog_override paths if the corresponding variable is

	json file was not opened in append mode

	logger names were not logged

	we can now give an exception object to “exception() method”

	isEnabledFor() and getEffectiveLevel() are now working

	null files was created in some directories

	null files in metwork environment (again)

	atomic writing when logging big messages in json

	avoid exception when called with no argument (or None)

	fix some string templating issues in corner cases

	fix latest commit

	close #11

	fix a syslog configuration issue with metwork

changelog_start (2019-01-21)

	No interesting change

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at team@metwork-framework.org. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Contributing guide

WARNING: work in progress

Version numbering

We follow the semantic versionning specification [https://semver.org/].

Summary (see above specification for more details)

Given a version number MAJOR.MINOR.PATCH, we increment the:

	MAJOR version when we make incompatible API changes,

	MINOR version when we add functionality in a backwards-compatible manner, and

	PATCH version when we make backwards-compatible bug fixes.

Commit Message Guidelines

Inspired by Angular project and conventional commits initiative [https://www.conventionalcommits.org],
we have very precise rules over how our git commit messages can be formatted. This leads to more readable messages that are
easy to follow when looking through the project history. But also, we use the git commit messages to generate the project
changelog.

So we follow the conventional commits initiative [https://www.conventionalcommits.org] specification.

Summary (see above specification for more details)

Each commit message consists of a header, a body and a footer. The header has a special format that includes a type,
a scope and a description. The commit message should be structured as follows:

<type>[optional scope]: <description>
<BLANK LINE>
[optional body]
<BLANK LINE>
[optional footer]

The commit message contains the following structural elements, to communicate intent to the consumers of the project:

	fix: a commit of the type fix patches a bug in your codebase (this correlates with PATCH in semantic versioning).

	feat: a commit of the type feat introduces a new feature to the codebase (this correlates with MINOR in semantic versioning).

	BREAKING CHANGE: a commit that has the text BREAKING CHANGE: at the beginning of its optional body or footer section
introduces a breaking API change (correlating with MAJOR in semantic versioning).
A breaking change can be part of commits of any type. e.g., a fix:, feat: & chore: types would all be valid,
in addition to any other type.
Others: commit types other than fix: and feat: are allowed, for example commitlint-config-conventional (based on the the Angular convention) recommends chore:, docs:, style:, refactor:, perf:, test:, and others. We also recommend improvement for commits that improve a current implementation without adding a new feature or fixing a bug. Notice these types are not mandated by the conventional commits specification, and have no implicit effect in semantic versioning (unless they include a BREAKING CHANGE, which is NOT recommended).
A scope may be provided to a commit’s type, to provide additional contextual information and is contained within parenthesis, e.g., feat(parser): add ability to parse arrays.

Examples

Commit message with description and breaking change in body

feat: allow provided config object to extend other configs

BREAKING CHANGE: `extends` key in config file is now used for extending other config files

Commit message with no body

docs: correct spelling of CHANGELOG

Commit message with scope

feat(lang): added polish language

Commit message for a fix using an (optional) issue number.

fix: minor typos in code

see the issue for details on the typos fixed

fixes issue #12

Revert

If the commit reverts a previous commit, it should begin with revert:, followed by the header of the reverted commit.
In the body it should say: This reverts commit <hash>., where the hash is the SHA of the commit being reverted.

Type

Must be one of the following:

	build: Changes that affect the build or CI system (chore is also accepted for compatibility)

	docs: Documentation only changes

	feat: A new feature

	fix: A bug fix

	perf: A code change that improves performance

	refactor: A code change that neither fixes a bug nor adds a feature

	style: Changes that do not affect the meaning of the code (white-space, formatting, missing semi-colons, etc)

	test: Adding missing tests or correcting existing tests

Scope

The scope is not used for the moment. Please don’t use scopes in commit messages.

Description

The description contains a succinct description of the change:

 use the imperative, present tense: "change" not "changed" nor "changes"
 don't capitalize the first letter
 no dot (.) at the end

Body

Just as in the subject, use the imperative, present tense: “change” not “changed” nor “changes”. The body should include
the motivation for the change and contrast this with previous behavior.

Footer

The footer should contain any information about Breaking Changes and is also the place to reference GitHub issues
that this commit Closes.

Breaking Changes should start with the word BREAKING CHANGE: with a space or two newlines. The rest of the commit
message is then used for this.

Pull-requests and issues labels

We use a consistent labelling scheme inspired by sensible-github-labels [https://github.com/Relequestual/sensible-github-labels].

Type

	Type: Bug: it’s about a bug

	Type: Enhancement: it’s about a new feature

	Type: Question: it’s just a question

	Type: Maintenance: it’s about a better way to implement an existing feature (refactor, performances improvement…)

Priority

	Priority: Critical: This should be dealt with ASAP. Not fixing this issue would be a serious error.

	Priority: High: After critical issues are fixed, these should be dealt with before any further issues.

	Priority: Medium: (implicit, does not exist as a label) This issue may be useful, and needs some attention.

	Priority: Low : This issue can probably be picked up by anyone looking to contribute to the project, as an entry fix.

Status

	Status: Pending: The issue is new, this is the triage status.

	Status: Closed: The issue/pr is closed (because the corresponding change is merged or because the corresponding change was abandoned/rejected)

	Status: Accepted: It’s clear what the subject of the issue is about, what the resolution should be, and we want this :-)

	Status: Blocked: There is another issue that needs to be resolved first, or a specific person is required to comment or reply to progress. There may also be some external blocker.

	Status: In Progress: This issue is being worked on, and has someone assigned.

	Status: Review Needed: The PR must be reviewed by a team member.

	Status: Revision Needed: Submitter of PR needs to revise the PR related to the issue.

Labels management by MetworkBot

We have a bot to do some automatic labelling:

	[x] When a pr is opended, it adds the Status: Pending label

	[x] When an issue is opened, it adds the Status: Pending label (if no other Status: * label was given initialy)

	[x] When a pr is closed, it removes every Status: * labels and adds Status: Closed

	[x] When an issue is closed, it removes every Status: * labels and adds Status: Closed

	[x] When a pr is reopened, it removes the Status: Closed label and adds Status: Review Needed

	[x] When an issue is reopened, it removes the Status: Closed label and adds Status: Pending

	[] When a new Priority: * label is set, old Priority: * labels are removed (if necessary)

	[] When a new Status: * label is set, old Status: * labels are removed (if necessary)

	[x] When a pr is not “good” (because of bad statuses for example), the label Status: Revision Needed is set

	[x] When a pr is “good” (statuses all green), the label Status: Review Needed is set

Code of Conduct

The MetWork community must follow the Code of Conduct described in this document.

mflog

Status (master branch)

[image: _images/badge.svg]GitHub CI [https://github.com/metwork-framework/mflog/actions?query=workflow%3ACI+branch%3Amaster]
[image: _images/maintained.svg]Maintenance [https://github.com/metwork-framework/resources/blob/master/badges/maintained.svg]

What is it ?

It is an opinionated python (structured) logging library built on structlog [https://www.structlog.org/]
for the MetWork Framework [http://metwork-framework.org] (but it can be used in any context).

Structured logging means that you don’t write hard-to-parse and hard-to-keep-consistent prose in your logs but that you log events that happen in a context instead.

	https://www.structlog.org/en/stable/why.html

Example:

from mflog import get_logger

Get a logger
log = get_logger("foo.bar")

Bind some attributes to the logger depending on the context
log = log.bind(user="john")
log = log.bind(user_id=123)

[...]

Log something
log.warning("user logged in", happy=True, another_key=42)

On stderr, you will get:

2019-01-28T07:52:42.903067Z [WARNING] (foo.bar#7343) user logged in {another_key=42 happy=True user=john user_id=123}

On json output file, you will get:

{
 "timestamp": "2019-01-28T08:16:40.047710Z",
 "level": "warning",
 "name": "foo.bar",
 "pid": 29317,
 "event": "user logged in",
 "another_key": 42,
 "happy": true,
 "user": "john",
 "user_id": 123
}

If the python/rich library [https://github.com/willmcgugan/rich] is installed (this is not a
mandatory requirement) and if the output is a real terminal (and not a redirection or a pipe),
the library will automatically configure a fancy color output (of course you can disable it if
you don’t like):

With following demo python program:

import mflog

Get a logger
logger = mflog.get_logger("foobar")

Bind two context variables to this logger
logger = logger.bind(user_id=1234, is_logged=True)

Log something
logger.info("This is an info message", special_value="foo")
logger.critical("This is a very interesting critical message")

Let's play with exception
try:
 # Just set a variable to get a demo of locals variable dump
 var = {"key1": [1, 2, 3], "key2": "foobar"}
 1/0
except Exception:
 logger.exception("exception raised (a variables dump should follow)")

You will get this color ouput:

[image: _images/demo.png]color output

(opinionated) Choices and Features

	we use main ideas from structlog library

	we log [DEBUG] and [INFO] messages on stdout (in a human friendly way)

	we log [WARNING], [ERROR] and [CRITICAL] on stderr (in a human friendly way)

	(and optionally) we log all messages (worse than a minimal configurable level) in a configurable file in JSON (for easy automatic parsing)

	(and optionally) we send all messages (worse than a minimal configurable level) to an UDP syslog server (in JSON or in plain text)

	we can configure a global minimal level to ignore all messages below

	we reconfigure automatically python standard logging library to use mflog

	Unicode and Bytes messages are supported (in Python2 and Python3)

	good support for exceptions (with backtraces)

	override easily minimal levels (for patterns of logger names) programmatically or with plain text configuration files

	if the python/rich library [https://github.com/willmcgugan/rich] is installed (this is not a mandatory requirement) and if the output is a real terminal (and not a redirection), the library will automatically configure a fancy color output (can be really useful but of course you can disable this feature if you don’t like it)

How to use ?

A mflog logger can be used as a standard logging logger.

For example:

Import
from mflog import get_logger

Get a logger
x = get_logger("foo.bar")

Usage
x.warning("basic message")
x.critical("message with templates: %i, %s", 2, "foo")
x.debug("message with key/values", foo=True, bar="string")

try:
 1/0
except Exception:
 x.exception("we catched an exception with automatic traceback")

x = x.bind(context1="foo")
x = x.bind(context2="bar")
x.info("this is a contexted message", extra_var=123)

How to configure ?

In python

import mflog

Configure
mflog.set_config(minimal_level="DEBUG", json_minimal_level="WARNING",
 json_file="/foo/bar/my_output.json")

Get a logger
x = mflog.get_logger("foo.bar")

[...]

With environment variables

$ export MFLOG_MINIMAL_LEVEL="DEBUG"
$ export MFLOG_JSON_MINIMAL_LEVEL="WARNING"
$ export MFLOG_JSON_FILE="/foo/bar/my_output.json"

$ python

>>> import mflog
>>>
>>> # Get a logger
>>> x = mflog.get_logger("foo.bar")
>>>
>>> # [...]

Note

When you get a mflog logger, if default configuration is applied automatically
if not set manually before.

How to override minimal level for a specific logger

If you have a “noisy” specific logger, you can override its minimal log level.

The idea is to configure this in a file like this:

lines beginning with # are comments

this line say 'foo.bar' logger will have a minimal level of WARNING
foo.bar => WARNING

this line say 'foo.*' loggers will have a minimal level of DEBUG
(see python fnmatch for accepted wildcards)
foo.* => DEBUG

The first match wins

Then, you can use

yes we use a list here because you can use several files
(the first match wins)
mflog.set_config([...], override_files=["/full/path/to/your/override.conf"])

or

if you want to provide multiple files, use ';' as a separator
export MFLOG_MINIMAL_LEVEL_OVERRIDE_FILES=/full/path/to/your/override.conf

Link with standard python logging library

When you get a mflog logger or when you call set_config() function,
the standard python logging library is reconfigured to use mflog.

Example:

import logging
import mflog

standard use of logging library
x = logging.getLogger("standard.logger")
print("<output of the standard logging library>")
x.warning("foo bar")
print("</output of the standard logging library>")

we set the mflog configuration
mflog.set_config()

now logging library use mflog
print()
print("<output of the standard logging library through mflog>")
x.warning("foo bar")
print("</output of the standard logging library through mflog>")

Output:

<output of the standard logging library>
foo bar
</output of the standard logging library>

<output of the standard logging library through mflog>
2019-01-29T09:32:37.093240Z [WARNING] (standard.logger#15809) foo bar
</output of the standard logging library through mflog>

mflog loggers API

.debug(message, *args, **kwargs)

Log the given message as [DEBUG].

	*args can be used for placeholders (to format the given message)

	**kwargs can be used for key/values (log context).

Examples:

from mflog import get_logger

x = get_logger('my.logger')
x.debug("my debug message with placeholders: %s and %i", "foo", 123,
 key1="value1, key2=True, key5=123)

.info(message, *args, **kwargs)

Same as .debug but with [INFO] severity level.

.warning(message, *args, **kwargs)

Same as .debug but with [WARNING] severity level.

.error(message, *args, **kwargs)

Same as .debug but with [ERROR] severity level.

.critical(message, *args, **kwargs)

Same as .debug but with [CRITICAL] severity level.

.exception(message, *args, **kwargs)

Same as .error (so with [ERROR] severity level) but we automatically add
the current stacktrace in the message through special key/values.

.bind(**new_values)

Return a new logger with **new_values added to the existing ones
(see examples at the beginning).

.unbind(*keys)

Return a new logger with *keys removed from the context.
It raises KeyError if the key is not part of the context.

.try_unbind(*keys)

Like .unbind but best effort: missing keys are ignored.

.die(optional_message, *args, **kwargs)

Same as .exception() but also do a .dump_locals() call and exit the program
with sys.exit(1).

.dump_locals()

Dump locals variables on stderr (for debugging).

mflog.*

All previous loggers method are also available in mflog module.

Example:

import mflog

mflog.warning("this is a warning message", context1="foobar", user_id=123)

FAQ

If I want to use mflog inside my library ?

If you write a library and if you want to use mflog, use mflog normally.
You just should avoid to call set_config() inside your library.

Do you have “thread local context mode” ?

This mode is explained here [https://www.structlog.org/en/stable/thread-local.html].

You have to understand what you are doing.

If you want to use it, just add thread_local_context=True to your set_config()
call. And you can use .new(**new_values) on mflog loggers to clear context
and binds some initial values.

Can I globally add an extra context to each log line ?

If you add extra_context_func=your_python_func to your set_config() call,
and if your_python_func returns a dict of key/values as strings when called
with no argument, these key/values will be added to your log context.

Another way to do that without even calling set_config() is to define
an environment variable called MFLOG_EXTRA_CONTEXT_FUNC containing the
full path to your python func.

Full example:

in shell
export MFLOG_EXTRA_CONTEXT_FUNC="mflog.unittests.extra_context"

then, in your python interpreter:

>>> from mflog import get_logger
>>> get_logger("foo").info("bar")
2019-04-11T07:32:53.517260Z [INFO] (foo#15379) bar {extra_context_key1=extra_context_value1 extra_context_key2=extra_context_value2}

Here is the code of mflog.unittests.extra_context:

def extra_context():
 return {"extra_context_key1": "extra_context_value1",
 "extra_context_key2": "extra_context_value2"}

Can I filter some context keys in stdout/stderr output (but keep them in json output) ?

Yes, add json_only_keys=["key1", "key2"] to your set_config() call or use
MFLOG_JSON_ONLY_KEYS=key1,key2 environment variable.

What about if I don’t want to redirect standard python logging to mflog ?

You can add standard_logging_redirect=False in your set_config() call
of set MFLOG_STANDARD_LOGGING_REDIRECT=0 environment variable.

Can I silent a specific noisy logger?

You can use override_files feature to do that or you can also use the
mflog.add_override function.

For example:

import mflog

for all mylogger.* loggers (fnmatch pattern), the minimal level is CRITICAL
mflog.add_override("mylogger.*", CRITICAL)

Not very interesting but this call will be ignored
mflog.get_logger("mylogger.foo").warning("foo")

How can I use syslog logging?

You can configure it with these keyword arguments during set_config() call:

	syslog_minimal_level: WARNING, CRITICAL…

	syslog_address: null (no syslog (defaut)), 127.0.0.1:514 (send packets to 127.0.0.1:514), /dev/log (unix socket)…

	syslog_format: msg_only (default) or json

or with corresponding env vars:

	MFLOG_SYSLOG_MINIMAL_LEVEL

	MFLOG_SYSLOG_ADDRESS

	MFLOG_SYSLOG_FORMAT

How to disable the fancy color output?

This feature is automatically enabled when:

	python/rich [https://github.com/willmcgugan/rich] library is installed

	the corresponding output (stdout, stderr) is a real terminal (and not a redirection to a file)

But you can manually disable it by adding fancy_output=False to your set_config().

Coverage

See Coverage report [https://metwork-framework.org/pub/misc/mflog/coverage/]

Contributing guide

See CONTRIBUTING.md file.

Code of Conduct

See CODE_OF_CONDUCT.md file.

Sponsors

(If you are officially paid to work on MetWork Framework, please contact us to add your company logo here!)

[image: _images/meteofrance-small.jpeg]logo [http://www.meteofrance.com]

What is it ?

It is an opinionated python (structured) logging library built on structlog [https://www.structlog.org/]
for the MetWork Framework [http://metwork-framework.org] (but it can be used in any context).

Structured logging means that you don’t write hard-to-parse and hard-to-keep-consistent prose in your logs but that you log events that happen in a context instead.

	https://www.structlog.org/en/stable/why.html

Example:

from mflog import get_logger

Get a logger
log = get_logger("foo.bar")

Bind some attributes to the logger depending on the context
log = log.bind(user="john")
log = log.bind(user_id=123)

[...]

Log something
log.warning("user logged in", happy=True, another_key=42)

On stderr, you will get:

2019-01-28T07:52:42.903067Z [WARNING] (foo.bar#7343) user logged in {another_key=42 happy=True user=john user_id=123}

On json output file, you will get:

{
 "timestamp": "2019-01-28T08:16:40.047710Z",
 "level": "warning",
 "name": "foo.bar",
 "pid": 29317,
 "event": "user logged in",
 "another_key": 42,
 "happy": true,
 "user": "john",
 "user_id": 123
}

If the python/rich library [https://github.com/willmcgugan/rich] is installed (this is not a
mandatory requirement) and if the output is a real terminal (and not a redirection or a pipe),
the library will automatically configure a fancy color output (of course you can disable it if
you don’t like):

With following demo python program:

{{ ("cat " + "REPO_HOME"|getenv + "/demo/demo.py")|shell }}

You will get this color ouput:

[image: .metwork-framework/./demo/demo.png]color output

(opinionated) Choices and Features

	we use main ideas from structlog library

	we log [DEBUG] and [INFO] messages on stdout (in a human friendly way)

	we log [WARNING], [ERROR] and [CRITICAL] on stderr (in a human friendly way)

	(and optionally) we log all messages (worse than a minimal configurable level) in a configurable file in JSON (for easy automatic parsing)

	(and optionally) we send all messages (worse than a minimal configurable level) to an UDP syslog server (in JSON or in plain text)

	we can configure a global minimal level to ignore all messages below

	we reconfigure automatically python standard logging library to use mflog

	Unicode and Bytes messages are supported (in Python2 and Python3)

	good support for exceptions (with backtraces)

	override easily minimal levels (for patterns of logger names) programmatically or with plain text configuration files

	if the python/rich library [https://github.com/willmcgugan/rich] is installed (this is not a mandatory requirement) and if the output is a real terminal (and not a redirection), the library will automatically configure a fancy color output (can be really useful but of course you can disable this feature if you don’t like it)

How to use ?

A mflog logger can be used as a standard logging logger.

For example:

Import
from mflog import get_logger

Get a logger
x = get_logger("foo.bar")

Usage
x.warning("basic message")
x.critical("message with templates: %i, %s", 2, "foo")
x.debug("message with key/values", foo=True, bar="string")

try:
 1/0
except Exception:
 x.exception("we catched an exception with automatic traceback")

x = x.bind(context1="foo")
x = x.bind(context2="bar")
x.info("this is a contexted message", extra_var=123)

How to configure ?

In python

import mflog

Configure
mflog.set_config(minimal_level="DEBUG", json_minimal_level="WARNING",
 json_file="/foo/bar/my_output.json")

Get a logger
x = mflog.get_logger("foo.bar")

[...]

With environment variables

$ export MFLOG_MINIMAL_LEVEL="DEBUG"
$ export MFLOG_JSON_MINIMAL_LEVEL="WARNING"
$ export MFLOG_JSON_FILE="/foo/bar/my_output.json"

$ python

>>> import mflog
>>>
>>> # Get a logger
>>> x = mflog.get_logger("foo.bar")
>>>
>>> # [...]

Note

When you get a mflog logger, if default configuration is applied automatically
if not set manually before.

How to override minimal level for a specific logger

If you have a “noisy” specific logger, you can override its minimal log level.

The idea is to configure this in a file like this:

lines beginning with # are comments

this line say 'foo.bar' logger will have a minimal level of WARNING
foo.bar => WARNING

this line say 'foo.*' loggers will have a minimal level of DEBUG
(see python fnmatch for accepted wildcards)
foo.* => DEBUG

The first match wins

Then, you can use

yes we use a list here because you can use several files
(the first match wins)
mflog.set_config([...], override_files=["/full/path/to/your/override.conf"])

or

if you want to provide multiple files, use ';' as a separator
export MFLOG_MINIMAL_LEVEL_OVERRIDE_FILES=/full/path/to/your/override.conf

Link with standard python logging library

When you get a mflog logger or when you call set_config() function,
the standard python logging library is reconfigured to use mflog.

Example:

import logging
import mflog

standard use of logging library
x = logging.getLogger("standard.logger")
print("<output of the standard logging library>")
x.warning("foo bar")
print("</output of the standard logging library>")

we set the mflog configuration
mflog.set_config()

now logging library use mflog
print()
print("<output of the standard logging library through mflog>")
x.warning("foo bar")
print("</output of the standard logging library through mflog>")

Output:

<output of the standard logging library>
foo bar
</output of the standard logging library>

<output of the standard logging library through mflog>
2019-01-29T09:32:37.093240Z [WARNING] (standard.logger#15809) foo bar
</output of the standard logging library through mflog>

mflog loggers API

.debug(message, *args, **kwargs)

Log the given message as [DEBUG].

	*args can be used for placeholders (to format the given message)

	**kwargs can be used for key/values (log context).

Examples:

from mflog import get_logger

x = get_logger('my.logger')
x.debug("my debug message with placeholders: %s and %i", "foo", 123,
 key1="value1, key2=True, key5=123)

.info(message, *args, **kwargs)

Same as .debug but with [INFO] severity level.

.warning(message, *args, **kwargs)

Same as .debug but with [WARNING] severity level.

.error(message, *args, **kwargs)

Same as .debug but with [ERROR] severity level.

.critical(message, *args, **kwargs)

Same as .debug but with [CRITICAL] severity level.

.exception(message, *args, **kwargs)

Same as .error (so with [ERROR] severity level) but we automatically add
the current stacktrace in the message through special key/values.

.bind(**new_values)

Return a new logger with **new_values added to the existing ones
(see examples at the beginning).

.unbind(*keys)

Return a new logger with *keys removed from the context.
It raises KeyError if the key is not part of the context.

.try_unbind(*keys)

Like .unbind but best effort: missing keys are ignored.

.die(optional_message, *args, **kwargs)

Same as .exception() but also do a .dump_locals() call and exit the program
with sys.exit(1).

.dump_locals()

Dump locals variables on stderr (for debugging).

mflog.*

All previous loggers method are also available in mflog module.

Example:

import mflog

mflog.warning("this is a warning message", context1="foobar", user_id=123)

FAQ

If I want to use mflog inside my library ?

If you write a library and if you want to use mflog, use mflog normally.
You just should avoid to call set_config() inside your library.

Do you have “thread local context mode” ?

This mode is explained here [https://www.structlog.org/en/stable/thread-local.html].

You have to understand what you are doing.

If you want to use it, just add thread_local_context=True to your set_config()
call. And you can use .new(**new_values) on mflog loggers to clear context
and binds some initial values.

Can I globally add an extra context to each log line ?

If you add extra_context_func=your_python_func to your set_config() call,
and if your_python_func returns a dict of key/values as strings when called
with no argument, these key/values will be added to your log context.

Another way to do that without even calling set_config() is to define
an environment variable called MFLOG_EXTRA_CONTEXT_FUNC containing the
full path to your python func.

Full example:

in shell
export MFLOG_EXTRA_CONTEXT_FUNC="mflog.unittests.extra_context"

then, in your python interpreter:

>>> from mflog import get_logger
>>> get_logger("foo").info("bar")
2019-04-11T07:32:53.517260Z [INFO] (foo#15379) bar {extra_context_key1=extra_context_value1 extra_context_key2=extra_context_value2}

Here is the code of mflog.unittests.extra_context:

def extra_context():
 return {"extra_context_key1": "extra_context_value1",
 "extra_context_key2": "extra_context_value2"}

Can I filter some context keys in stdout/stderr output (but keep them in json output) ?

Yes, add json_only_keys=["key1", "key2"] to your set_config() call or use
MFLOG_JSON_ONLY_KEYS=key1,key2 environment variable.

What about if I don’t want to redirect standard python logging to mflog ?

You can add standard_logging_redirect=False in your set_config() call
of set MFLOG_STANDARD_LOGGING_REDIRECT=0 environment variable.

Can I silent a specific noisy logger?

You can use override_files feature to do that or you can also use the
mflog.add_override function.

For example:

import mflog

for all mylogger.* loggers (fnmatch pattern), the minimal level is CRITICAL
mflog.add_override("mylogger.*", CRITICAL)

Not very interesting but this call will be ignored
mflog.get_logger("mylogger.foo").warning("foo")

How can I use syslog logging?

You can configure it with these keyword arguments during set_config() call:

	syslog_minimal_level: WARNING, CRITICAL…

	syslog_address: null (no syslog (defaut)), 127.0.0.1:514 (send packets to 127.0.0.1:514), /dev/log (unix socket)…

	syslog_format: msg_only (default) or json

or with corresponding env vars:

	MFLOG_SYSLOG_MINIMAL_LEVEL

	MFLOG_SYSLOG_ADDRESS

	MFLOG_SYSLOG_FORMAT

How to disable the fancy color output?

This feature is automatically enabled when:

	python/rich [https://github.com/willmcgugan/rich] library is installed

	the corresponding output (stdout, stderr) is a real terminal (and not a redirection to a file)

But you can manually disable it by adding fancy_output=False to your set_config().

Coverage

See Coverage report [https://metwork-framework.org/pub/misc/mflog/coverage/]

 _static/comment-bright.png

_images/meteofrance-small.jpeg
METEO
FRANCE

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/demo.png
2020-85-20T12:21:53.5338Z [INFO] foobar#17945 This is an info message

{ is_logged=True special value=foo user id=1234 }
2020-05-20T12:21:53.5372Z foobar#17945 This is a very interesting critical message

{ is_logged=True user id=1234 }
2020-05-20T12:21:53.5402Z [ERROR] foobar#17945 exception raised (a variables dump should follow)

{ is_logged=True user id=1234 }

Traceback (most recent call last):

File "deno/deno.py”, line 17, in <module>

14 try:
15 # Just set a variable to get a demo of locals variable dump
16 var = {"keyl": [1, 2, 3], "key2": "foobar"}
v 1/0
18 except Exception:
19 logger.exception(“exception raised (a variables dump should follow)")

ZerobivisionError: division by zero
Locals

‘mflog’ |<module 'mflog' from '/home/fab/metwork/mflog/mflog/ init .py's>

“logger" |<MFBoundLogger (context={'name': 'foobar', 'user id': 1234, 'is logged': 1,
processors=[<function fltr at 0x7f864adbdodo>, <function add level at 0x7f864adbdle0>,
<function add pid at 0x7f864a9bd268>, <function add extra context at 0x7f864aghd2f0>,
<structlog. processors. TineStanper object at 0x7f864a9c3318>, <function add exception info
at 0x7f864a9bd378>, <structlog. stdlib.PositionalArgunentsFornatter object at
ox7f864cef30fo>, <structlog.processors.UnicodeDecoder object at 0x7f86554773c8>,
<function set_config.<locals>.<lambda> at 0x7f8655e711e0>])>

‘var' |{'keyl': [1, 2, 3], 'key2': ‘foobar'}

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

